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Abstract

As they learn from observed data, neural networks have found many applications in communi-
cation networks. Here, a neural network for Call Admission Control (CAC) based on the Probabil-
istic-RAM (pRAM) neuron model is presented. Because pRAM neural networks can be imple-
mented in hardware easily and at a low cost, they make excellent controllers in the ATM environ-
ment. The performance of such a controller is analysed through simulations, and the results are
compared with the equivalent capacity of connections CAC algorithm. The results show that, the
proposed hardware-based controller guarantees the required quality of service and at the same time

provides an improvement in network utilization.

1 Introduction

Among the tasks that ATM must be able to fulfil is the ability to meet the demands for service
quality posed by the different service classes. These demands are negotiated during the call-setup
procedure and, based on the ability of the network to satisfy these requirements without deterio-
rating the quality of service (QoS) provided to already established connection, a call is accepted
ot rejected. On the other hand, the efficient utilization of network resources is a primary concern

to the network provider, thus a balance has to be maintained between the QoS and network utili-
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zation. This is done through traffic control mechanisms, such as Connection Admission Control
(CAC).

CAC procedures decide whether a new connection should be accepted or rejected. Tradi-
tionally, this is done by defining an analytical model of the network and then applying mathe-
matical techniques in order to evaluate the effect of the traffic configuration on the QoS. In most
cases the resulting calculations are too complex to be performed in real time, and an approxima-
tion is needed at the price of reduced network throughput. Also, the accuracy of the decision de-
pends on the accuracy of the analytical model.

One of the alternatives proposed is the use of neural networks. Due to their ability to learn
from observed data, neural networks can be trained to model the non-linear relationship between
the traffic characteristics and the QoS. The knowledge acquired by the neural network can then
be used in real time to generate the CAC decision. Because neural networks are adaptive and rely
on observed data rather than on an analytical model of the system at hand, the resulting scheme
is robust, efficient and capable of modifying itself to reflect changes in traffic behaviour.

To evaluate the suitability of a neural-network based CAC scheme, however, the issues of
hardware realization and of its cost must be considered. In this work, a neural admission con-
troller based on the Probabilistic-RAM (pRAM) neuron model is presented. Neural networks
built using this neuron model have all the advantages discussed above, but most important can be

easily implemented with conventional RAM memory, with the result of high cost-effectiveness.

2 pRAM Based Artificial Neural Networks

An artificial neural network, or simply a neural network, is an information processing system
whose structure was inspired by research on the human brain. It differs from traditional com-
puting systems in that, rather than having a single, complex processing unit, it is built of many
simple processing units interconnected in a network-like structure. The basic processing unit of a
neural network is called a #exron, in analogy with the neurons found in the human brain. A neu-

ron is a multiple-input, single-output non linear circuit.

2.1 The pRAM Neuron Model

A N-input pRAM (N-pRAM) has N binary inputs #,, ... , #, and one binary output 4. Like in con-

ventional memories, the input vector u=[#, ... , #,] selects one out of 2" locations O, whose



content is a continuous value between 0 and 1. The selected O, represents the probability that the

neuron fires, which means that the output #is 1. The O 's are referred to as weights.

Given an input vector i, the probability that the pRAM firesisthen

Pr@a=1|i)=a, )
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Figure 1: pRAM network topologies: feed-forward fully interconnected (a), pyramidal
(b), trapezoidal (c).

or more generally

N

Pra=1li)= Y a, ]y, +7,) 2
u j=1

where for any real number z, Z=1-2Z.

The output « is then 1 with a probability whose distribution is governed by the 2¥ variables O,

Apart from providing a realistic model of a biological neuron, this allows for a large number of

behaviours and high nonlinearity [2].

2.2  PRAM network topologies

As with any other neuron model, pPRAM neurons are organized in networks. The number of neu-
rons in the network and the network topology determine the capabilities of the network itself,
and also influence the speed of learning. Different applications usually require different network

architectures, and the right network architecture is found with a trial-and-error procedure where



the performance of different networks is assessed for the particular problem in order to find the
most suitable one.

The main types of network architectures used with pRAM neurons are the fully-connected
feedforward network and the pyramidal network (fig. 1). The pyramidal network is usually pre-

ferred as it proved to be suitable for most applications with the advantage of greater simplicity.

2.3  Learning in pRAM networks

A simple and efficient reinforcement learning technique has been developed for the pRAM, in

which the environment generates a binary reward signal r D{O,l} and a binary penalty signal
p D{O,Z} . At each step of the learning procedure only the weight that was addressed by the input
vector is updated. At time 7+1 the new weight Q| (t +1) is given by a, ('[ +1) =a, ('[)+ Aa, (t),

where Aa, (t) is obtained by the fearning rule
Ba,(t)=pla-a, ) +A@-a,)pf)xe,, (3)

whete g0 [O,]] is defined as the learning rate and A U [O,:I] as the reward-to-penalty ratio.
The effect of equation (3) is that when a reward is received (r=1) the probability @, of obtaining
the same output # with the same input vector # increases, whereas the same probability decreases

if a penalty is received (p=1). The Kronecker delta C; ensutes that only the location accessed at

time /1s updated.
Other training algorithms than the one described above can be used. A version of the popular

back-propagation technique, for example, has been defined for the pRAM]2].

2.4  The Integrating pRAM

An extension of the pRAM that operates on real-valued inputs and outputs, called the integrating
pRAM (i-pRAM), has been presented in [5]. The structure of the i-pRAM is the same as that of

the pRAM: what is different is the way in which inputs are presented to the neuron.
Let us consider a single real number X[ [0,]]. The number x can be approximated by a

quantity X* obtained by averaging a pulse stream of length R:
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where /(r) is a binary value which takes the value 1 with probability equal to x. If we present N of
such pulse streams on each of the N pRAM inputs, the pRAM will generate at the output another

pulse stream of length R that can be averaged in the same way as before to obtain a real number
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Figure 2: Input and output sequences of an i-pRAM.

yO [0,]] , which is the real output of the i-pRAM.

The learning rule (3) needs to be modified to work in the i-pRAM case. Over the period R,

at most R different locations will be addressed by the different binary input vectors resulting

from the conversion of the real values in pulse streams. We define X as the number of times
that a location @, has been addressed. The quantity X, gives a measure of how much the
weight @, contributed in generating the output y, and thus indicates how much @, should be af-

fected by the training step. Having introduced X, the learning rule (3) becomes:

Aa, (t): p((a_ay) +/](§ ‘%)pxt)" Xy (t) ®)



2.5  Hardware realization of pRAM networks

2.5.1 Hardware model of the pRAM neuron

As it was said in section 2.1, the step from the abstract definition of the pRAM neuron model to
its hardware implementation is indeed short.

The weight memory can be implemented with an ordinary bank of RAM, with a number of
bits per location sufficient to guarantee enough precision for the weights. Common 16-bit com-
mercial memories are suitable for this purpose [2].

The only other components needed are a random number generator and a comparator

(Fig.3).
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Figure 3: Hardware realization of a pRAM neuron.

When an input is presented to the pRAM, the content of the corresponding memory loca-
tion is extracted and it is compared with the outcome of the random number generator. If the

random number is less than or equal to the weight, the pRAM output is 1, otherwise it 1s 0.

2.5.2 The pRAM-256 VLSI Neural Network Processor}

The current generation of hardware pRAM was presented in [4]: it is a VLSI processor, called

pRAM-256, that implements 256 neurons on one chip. Its main features are[3]:
¢ 256 pRAMs, 6 inputs each
¢ Configurable connections between pRAMs

¢ On-chip Reinforcement Learning Unit, implementing the learning rule (3)



¢ Learning can be global (i.e. the reinforcement signal is broadcast to all neurons) or local

(i.e. each neuron receives a different reinforcement signal)
¢ A non-learning cycle for all 256 pRAMs takes 0.154ms at 33 MHz
¢ A learning cycle for all 256 pRAMs takes 0.246ms at 33 MHz
¢ External static RAM used for efficient weight storage

¢ The number of 256 neurons is enough for most applications. If a larger network needs to
be built, up to five chips can be connected in parallel to provide a larger number of neu-

rons.

Thanks to the on-chip learning unit and to the configurable connections, the pRAM-256 pro-
vides a complete hardware solution that can be embedded in stand-alone controllers without the

need of software support, still offering the flexibility of a software solution.

3 pRAM Networks for CAC

Connection admission control has been one of the first problems in ATM control to be ad-
dressed through the use of neural networks. The ability of neural networks to adapt to changing
traffic situations combined with prediction capabilities have resulted in very efficient schemes [1,

7-12, 15]. The main advantages obtained through the use of neural networks in CAC are:

¢ A NN based controller does not depend on a particular traffic model, as opposed to

analytical CAC techniques.

¢ A NN based controller is adaptive, and can be retrained to reflect changes in the ATM

network, like the introduction of a new setrvice or modifications in the network topology.

¢ A NN based controller is fast, and once its structure is defined its speed does not depend

on the complexity of the relation to be learned.

¢  Because it extracts information from the observation of traffic, a NN based controller

does not require the user to specify a detailed traffic descriptor.
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Figure 4: Block diagram of a neural CAC controller.

The general scheme for CAC using neural networks is shown in fig.4: before beginning to trans-
mit, a user asks for permission to the admission controller, that interrogates the neural network in
otder to evaluate the effect of the new connection on the resulting QoS. At the same time, train-
ing data is collected by observing the buffer status and relating this information to the current
network situation.

Most of the neural networks applications to CAC refer to the classical multilayer perceptron
model, without addressing a particular hardware solution. The issue of hardware implementation,
however, must be considered in order to judge how and at which cost a particular neural network
implementation can be integrated in an ATM switch.

The pRAM neuron model described in section 2 can be easily implemented with common
digital components, and as its main building block is an array of conventional RAM, its imple-
mentation is also very cost effective. For these reasons, and for its good properties in terms of
learning speed, it makes an excellent candidate for the ATM environment where cost and speed

are critical issues.



3.1  Definition of the pRAM Admission Controller

The first step in the definition of the neural admission controller is deciding the problem repre-
sentation, or in other words which information must be presented to the neural network and
how, and which information are received from the neural network. Particular care must be taken

in making this choice, because it influences the learning ability of the neural network.

3.1.1 Choice of Inputs and Outputs

There is good agreement [8,11] that the neural network should have as many inputs as there are

traffic classes, each input representing the number of open connections of each class. That is, if
we have N traffic classes we define the cal/ vector C= [Cl,---,CN], C is the number of traffic

sources of class 7 that are allowed to transmit.

For what concerns the output, a possible solution is to make the neural network directly
generate the CAC decision. In this case the neural network would act as a classifier, one class
being the acceptable call vectors (i.e. those for which the required QoS is guaranteed) and the
other the unacceptable ones. However, such a choice implies that the neural network needs to be
retrained whenever the QoS requirement changes.

A better choice is to make the neural network estimate the expected value for the QoS pa-
rameter given a certain call vector: this way, to decide if a call vector can be accepted or not, the
estimated QoS is compared with a threshold corresponding to the QoS objective, and if the latter
1s changed it is sufficient to modify this threshold.

With such a choice of inputs and outputs, the neural network acts as a function approxima-
tor, the target function being the correspondence between the QoS parameter and the call vector.
As a confirmation of the validity of such a choice, it should be noted that several analytical CAC
techniques (for example the one in [13]) attempt to calculate an approximation of the same func-

tion.

312 Input and Output Transformations

It is necessary to operate some kind of transformation on the inputs before feeding them to the
neural network, and on the outputs after retrieving them. This is not only because the i-pRAM
works in the range [0,1], but also because we need to convert the target function to a form that is

easier to learn.



Each input to the i-pRAM is an integer number, that must be converted to a real number in

the range [0,1]. As the inputs are equally spaced in their range, a simple normalization is enough

for this task. Thus, if C, is the component of the call vector we are considering, the correspond-

ing input to the i-pRAM X is:

X = + ! (6)

where C is the link capacity (in cells/sec) and SCR and PCR ate the Sustainable and Peak Cell
Rate, and we are considering the Cell Loss Rate (CLR) as the QoS objective. In other words, we
take as the minimum number of connection the one given by the peak rate allocation (as any
number of connections below this would never generate any losses), and as the maximum the
one given by the average (sustainable) rate allocation (as any number of connections above this
would make the network unstable, because the aggregate offered load would exceed the link ca-
pacity).

Let us consider as a QoS parameter the Cell Loss Rate (CLR). As the loss rate is already in

the range [0,1], it could appear that no output transformation is needed. However, the pRAM

does not have the precision required to approximate the very small values, for example 107, of
loss rates that occur in an ATM network. As we are only interested in the order of magnitude of
the CLR, we can train the i-pRAM network to learn the logarithm of the loss rate instead. Again,
we must normalize this value in the range [0,1] by choosing a minimum and maximum value: the

maximum is obviously log(1)=0, while the minimum is the lowest CLR requitement, say
|Og¢|.0_12): —12. As the i-pRAM generates positive numbers, we must take the opposite of the

log(CLR). The output transformation is then:
-_Y
log(CLR)=——= 7
9(CLR)= -1 (7)

where y is the output of the i-pRAM.

Another choice that must be made at this stage is which pRAM network topology to use.
pRAM networks have been successfully used as function approximators in their continuous ver-
sion, the i-pRAM. In particular, a two-layer pyramidal network of 8-ipRAMs (fig.5) has been used
in ATM traffic shaping [14] and head-of-line control [16]. Also in our experiments this topology

proved to be a good compromise between simplicity and accuracy.
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313 Training

In order for the neural network to correctly apprehend the relation between the QoS parameter
and the call vector, training data must be collected during the normal ATM network operation.
The purpose of this data collection is to relate the value of the QoS parameter with the call vec-

tor that generated it. The way in which this data collection is performed is different for the vari-

ous QoS parameters.

Let us take the CLR as the QoS parameter. Ideally, to correctly relate the CLR to the number
of connections we would need to fix the number of connections until the network reaches the
steady state and only then compute the average value of the loss rate. In the practical case, how-

ever, the number of connections varies unpredictably and it is not possible to fix a given number

8-pRAM

8-pRAM

8-pRAM

8-pRAM
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8-pRAM
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Figure 5: Neural network topology.

of connections without interfering with the users’ requests.



It has been pointed out [13] that in a broadband network the arrival rate of data is much
higher than the arrival rate of calls: moreover, the time between two successive connection re-
quests is usually enough for the CLR to reach a value close to the steady-state value.

For this reason, to collect the training data we calculate the CLR between two successive call
requests and we relate it to the call vector observed at the beginning of the interval. As we could
obtain, for the same call vector, different values for the CLR in different observation intervals,
we take as a final measurement the average of those values.

A method to collect data for Cell Transfer Delay (CTD) approximation has been proposed
in [11]. In this method, when a cell enters the buffer it is stamped with the current time and the
call vector. Then, when the packet exits the buffer and is transmitted on the link, the CTD is cal-
culated as the difference between the exit time and the insertion time, and it is related with the

stamped call vector. Again, an average of the measurements obtained for the same call vector is

[ — update the numberof | | /\
incoming cell arrived and lost (due to ] outgoing cell
— full buffer) cells [ \/
‘ ‘ ‘ ‘ ATM buffer
When the call vector is
modified, store the  — L #\ .
observed CLR and restart Training data / Trammg
counters
Call vector pRAM pyramid —9
acc/rej predicted CLR
required
CLR

Figure 6: Data collection for CLR approximation.



taken as a final value.
This way, the neural network learns to approximate the delay introduced by the buffer: as the
other factors that contribute to the overall delay (for example, the propagation delay) are fixed,

this estimate is enough to predict the CTD introduced at the local switch.

3.2 Integration with an ATM Switch

The diagram of Fig.4 is general, and does not take into account the fact that access to an ATM
network takes place through a switching element. In the practical case, the information about the
QoS and traffic parameters of the new connection must be extracted from the traffic descriptor
contained in the connection request that is embedded in the flow of cells. Only when the request
has been accepted by all the switches along the path the connection is effectively established.

Fig.7 illustrates how the pRAM controller could be situated inside an ATM switch with out-
put buffering: every output link has its own buffer, and each buffer has a dedicated pRAM con-
troller. If, as it is often the case, a separate buffer is used for the different QoS requirements,
again a pRAM controller must be used for each buffer.

The use of the term, pRAM controller, means the hardware-based neural network used in
this research. In the simulation and results, the pRAMs are used in the integrating mode, as i-

pRAMSs, but the term pRAM is used for readability.

4 Simulation and Results

The performance of the proposed controller is analysed through simulations conducted in
OPNET (OPtimized Network Engineering Tools).

The first step of our simulation experiments is to collect data for successive pRAM training.
To do this, we run the simulation without any admission control, in order to explore all the pos-
sible traffic configurations, even those that would cause congestion in the ATM network. The
system in question is an ATM node with a buffer size of 10 cells, where sources of a single class
are multiplexed. The sources are modelled using the Interrupted Bernoulli Process (IBP) [13].
The peak and average rates, normalized to the link capacity as in [16], are P=0.05 and D=0.01

and the mean burst length is B=80.
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Figure 7: Integration with an ATM switch.

Call requests are generated at a constant rate of 5 calls/sec in the high traffic state, and 0.01
calls/sec in the low traffic state. The duration of the high and low traffic states is 16 seconds, and
the initial number of active connections is 20, so that the number of requests oscillates between
1/P=20 (peak allocation) and 1/D=100 (average allocation).

The simulation enables us to verify the validity of our method to measure the CLR. The
simulation was petformed for a simulated time of 5000 seconds with a link capacity of 50 Mb/s.
The measured CLR is then compered with the values obtained using the analytical computation
of the CLR according to the method proposed in [13]. The results of this comparison are shown
in fig.8.

The graph shows that the measured CLR closely follows the analytical calculation for high
values of the loss rate, becoming less accurate for lower values. The reason for this is that in or-
der to measure very low values of the CLR we need to run the simulation for a long time: for ex-

ample, if we need 100 losses to measure the CLR with reasonable accuracy, for a CLR of 10° we



must generate at least 10" cells. With a link capacity of 50Mb/s this means running the simula-
tion for at least 84800 simulated seconds on/y for the traffic configurations that generate that par-
ticular CLR. In a real ATM network this would not be a problem, because the measure would be
obtained during normal network operation; in our simulation, however, we had to stop the accu-
racy to a CLR of 10, also taking into account the fact that the measurements of the lowest CLRs
are less reliable.

Having collected the data, we now train the pRAM network to learn the relationship be-
tween the CLR and the number of connections. Figure 9 shows the training error obtained with
the learning rates p=0.1 and A=0.01: as it can be seen, the error goes below 4% after only 80
training epochs.

Figure 10 compares the pRAM approximation with the CLR measurement. Again, the area
around the CLR value of 10 is less reliable.

At this point we can use the trained pRAM to predict the variation of the CLR as the net-
work evolves. As we want to show how the pRAM predicts the loss rate in various traffic situa-
tions, we still leave the network uncontrolled. This time call requests are generated with expo-
nentially distributed inter-arrival times: the traffic configuration (i.e. the variation of the number
of calls) is shown in figure 11.

Figures 12 and 13 respectively show the prediction of the CLR at every connection initiation
or termination and the prediction of the average CLR. It can be seen that the pRAM prediction is
close to the actual measurement.

Finally, we use the pRAM prediction of the CLR to generate the CAC decision. The maxi-
mum number of connections admitted by the pRAM admission controller for different buffer
sizes and a CLR requirement of 10™ is given in figure 14, and it is compared with the maximum
number of connections admitted by the equivalent capacity method [6].

Fig.15 shows the average CLR measured in the buffer when the maximum number of con-
nections is admitted by the pRAM admission controller, with a statistical confidence of 90%: it is
evident that the CLR requirement of 10* is respected. The CLR obtained with the equivalent ca-
pacity method was 0 in all situations, and is not shown in the graph. This is in accordance with
the fact that the equivalent capacity method is highly conservative, especially with small and

moderate buffer sizes [10].
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Conclusions and Further Work

The simulation results show how the proposed admission controller successfully approximates
the variation of the QoS parameter while the ATM network evolves. The pRAM-based neural
network learns the relation between the CLR in the ATM buffer and the number of admitted
connections quickly and with good accuracy, with the additional advantage of easy and inexpen-
sive hardware realisation.

The network performance obtained using the proposed admission controller shows a good
improvement over that obtained with the equivalent capacity method; in particular, the neural
controller is less conservative, resulting in better network utilization while still meeting the QoS
requirement.

There are several ways in which this work could be improved. First of all, the system should
be tested with other traffic models than the IBP, and especially with a traffic model that better
reproduces video sources. Also different ATM network topologies should be used, in order to
test the effect of the aggregation of traffic at intermediate switches.

Different pRAM networks should also be tested, especially for the case of multiple classes,

as well as different choices of inputs and outputs.
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Figure Captions

Figure 1: pRAM network topologies: feed-forward fully interconnected (a), pyramidal (b),
trapezoidal (c).



